Evaluation of the micro-gravity compatible pre-concentrator system for the microbial monitoring of International Space Station water samples Snehit Mhatre¹, Cynthia Ly¹, Tristan Grams¹, Christina Khodadad^{2,3}, Mary Hummerick³, Aaron Curry⁴, Cory Spern⁴, and Kasthuri Venkateswaran¹ ¹California Institute of Technology, Jet Propulsion Lab; ²Sierra Lobo, Inc; ³Vencore, Inc; ⁴Aecom – LASSO **American Society for Gravitational and Space Research 2018** #### **Overview** - Background - Concentrator devices - Methods for testing efficiency - CFU and qPCR Data - Other work done at JPL # Problems faced with Microbial Monitoring on the ISS - Current microbial monitoring methods for ISS water samples are laborious and timeconsuming. - Technological advancement of rapid microbial detection and identification systems have far outpaced sample preparation techniques. - Sample concentration technologies are needed to meet NASA Medical Operation Requirement Document (MORD) specification for potable water - 5 x 10⁴ CFU/liter. #### **Current Concentrator Devices** - Millipore - Membrane Filter - Plate or suspend in desired fluid - Innovaprep CP-150 - Hollow fiber membrane filter - No transfer steps needed - High concentration factor - Wet-foam elution # **Development of the iSSC** - iSSC stands for the International Space Station Smart Sample Concentrator. - Provide ISS capability for rapid concentration of microorganisms. - Concentrate 1L samples into as low as 250 µL using hollow fiber membrane filtration and wet-foam elution. # How did we test the efficiency of the iSSC? - iSSC was compared against Innovaprep CP-150 and Millipore 0.45µm filters. - 1 bacterial community and 3 model organisms were used to test the efficiency of each machine. - Data obtained includes CFU counts, qPCR data of the 16S rRNA gene. # Methods Employed to Determine Concentrator Efficiency Efficacy of iSSC system in the detection of microbial cells at the concentration of 10⁴ cells per liter of water # Average Concentration for iSSC, CP-150, and Millipore #### **Recovery Volume from Concentrator** **Concentrator Device** The average recovery volume after concentration using iSSC was 304 μ L (n=9), CP-150 was 530 μ L (n=9), and Millipore was 928 μ L (n=9). ### Percent Recovery based on colony count using 10⁴ CFU/ml data iSSC **CP-150** **Concentrator Device** Millipore 20- iSSC The average percent recovery of *R. pickettii* for iSSC was 62%, CP-150 was 39%, and Millipore was 8%, p=.0002, n=12. #### % Recovery of 3 Bacterial Populations **CP-150** **Concentrator Device** Millipore The average percent recovery of all bacterial communities for iSSC. was 63%, CP-150 was 43%, and Millipore was 14%, p<.0001, n=36. ## Concentration efficiency using Smart cycler qPCR data Sphinogmonas paucimobilis Smart cycler ct value data qPCR Ralstonia pickettii Smart cycler ct value data R. pickettii: Average difference in Ct values for iSSC was 1.5, CP-150 was 2.0, and Millipore was 3. 1 log difference in copy # will be ~3 Ct n=12. Cupriaviuds basilensis Smart cycler ct value data C. basilensis: Average difference in Ct values for iSSC was 1.5, CP-150 was 2.5, and Millipore was 1. 1 log difference in copy # will be ~3 Ct n=12. Since the copy number variations are enormous, DNA extraction efficiency, higher concentration of target DNA, and other PCR platforms (RAZOR, Light Cycler, BioRad) are explored # **Model Microbial Community Composition** TABLE 1. Various characteristics of MMC constituents | Sample no. | Microbe | Strain | Domain: phylum | Morphology | Culture conditions
or reference ^a | Incubation
time (h) | Other available source(s) ^b | Significance (reference[s]) | |------------|------------------------------|-------------------|-------------------------------|----------------|---|------------------------|--|---| | 1 | Aureobasidium pullulans | 28v1 | Eukarya: Ascomycota | Black yeast | TYG agar, 30℃ | 86 | NRRL 58992 | Eukaryotic representative, facultative
anaerobic spore former, original
isolate (16) | | 2 | Acinetobacter radioresistens | 50v1 | Bacteria: Gammaproteobacteria | Short rods | TYG agar, 32℃ | 60 | NRRL B-59417 | Resistant to desiccation and
radiation, aerobic non-spore
former, original isolate (16) | | 3 | Bacillus megaterium | KL-197 | Bacteria: Firmicutes | Rods | TYG agar, 32℃ | 38 | NRRL B-59415 | Frequently isolated from SAC (15,
16), facultative anaerobic spore
former, vegetative cells of original
isolate | | 4 | Bacillus pumilus | SAFR-032 | Bacteria: Firmicutes | Spores | See reference 13 | NA ^c | ATCC PTA-7603, NRRL
B-30938 | Strains showing extraordinary UV
resistance, frequently isolated from
SAC (13), facultative anaerobic
spore former, spores of original
isolate | | 5 | Deinococcus radiodurans | ATCC 13939 | Bacteria: Deinococcus-Thermus | Cocci, tetrad | TYG agar, 32°C | 60 | NRRL B-59418, DSM
20539 | Strains showing extraordinary
gamma radiation resistance,
sequences retrieved from
spacecraft surfaces (3), aerobic
non-spore former, isolate procured
from culture collection | | 6 | Microbacterium imperiale | 47v1 | Bacteria: Actinobacteria | Short rods | TYG agar, 32℃ | 60 | NRRL B-59416 | Extremely hardy, difficult to extract
DNA from cells (17), aerobic non-
spore former, original isolate | | 7 | Staphylococcus warneri | 82-4 | Bacteria: Firmicutes | Cocci | TYG agar, 32℃ | 40 | NRRL B-59414 | Frequently isolated from SAC (16,
35), human associated, facultative
anaerobic non-spore former,
original isolate | | 8 | Micrococcus luteus | ATCC 4698 | Bacteria: Actinobacteria | Rods | Nutrient agar, 32°C | 60 | NRRL B-59413, DSM
20030 | Common contaminant of indoor
environments and SAC (16), air
borne and human associated,
aerobic non-spore former, original
isolate | | 9 | Cupriavidus metallidurans | CH34 ^d | Bacteria: Betaproteobacteria | Rods | TYG agar, 32℃ | 60 | ATCC 43123 | Ubiquitously isolated from SAC
(22), heavy metal resistant, aerobic
non-spore former | | 10 | Clostridium sporosphaeroides | DSM 1294 | Bacteria: Firmicutes | Anaerobic rods | DSMZ medium 78,
37°C, anaerobic | 48 | ATCC 25781 | Representative of obligate anaerobic spore formers found in SAC (30, 35), isolate procured from culture collection, vegetative cells | | 11 | Methanobacterium formicicum | DSM 1535 | Archaea: Euryarchaeota | Rods | DSMZ medium 119,
37°C, anaerobic | 72 | ATCC 33274 | Representative of broad
(uncultivated) archaeal diversity of
SAC (21, 23), anaerobic non-spore
former, isolate procured from
culture collection | [&]quot; TYG, tryptone yeast extract glucose. ^b ATCC, American Type Culture Collection; NRRL, USDA culture collection; DSM, German collection of cell cultures; PTA, patented strain. ⁶ NA, not applicable since the spores were prepared prior to the investigation and the appropriate concentration from the original stock was used. d Received from Natalie Leys, Hoofd Onderzoeks Eenheid Microbiologie at SCK-CEN, Antwerp, Belgium. ### Concentration efficiency of Model Microbial Community using qPCR data #### MMC: Average difference in Ct values for iSSC was 1.25, CP-150 was 2.5, and Millipore was 3.5. 1 log difference in copy # will be ~3 Ct n=12. # **Overall Conclusions and Future Directions for iSSC Project** - CFU and qPCR results suggest that the iSSC concentrated more microorganisms and relevant 16S rRNA gene copies and hence considered better sample concentrator compared to CP-150 and Millipore systems. - Similar experiments will be repeated to test the efficiency of iSSC concentrator for 10³ & 10² dilutions per liter. - Coordinate with KSC in evaluating iSSC system for "microbial monitoring" applications using RAZOR. ## **Acknowledgements** - Members at BPPG-JPL and LASSO-AECOM-KSC. - NASA Advanced Exploration Systems grant to JPL for environmental monitoring. - Caltech-Jet Propulsion Laboratory. - Kennedy Space Center. - American Society for Gravitational and Space Research.